NI PXIe-7866

R Series Reconfigurable I/O Module (AI, AO, TTL-compatible DIO) for PXI Express, 2 AI, 24 AO, 32 TTL-compatible DIO, 1 MS/s AIO, 512 MB DRAM, Kintex-7 325T FPGA

The following specifications are typical at 25 °C unless otherwise noted.

Caution Observe all instructions and cautions in the user documentation. Using the model in a manner not specified can damage the model and compromise the built-in safety protection. Return damaged models to NI for repair.

Attention Suivez toutes les instructions et respectez toutes les mises en garde de la documentation utilisateur. L'utilisation d'un modèle de toute autre façon que celle spécifiée risque de l'endommager et de compromettre la protection de sécurité intégrée. Renvoyez les modèles endommagés à NI pour réparation.

Analog Input

Number of channels	2
Input modes (software-selectable; selection applies to all channels)	DIFF, NRSE ¹ , RSE
Type of ADC	Successive approximation register (SAR)
Resolution	16 bits
Conversion time	1 μs
Maximum sampling rate (per channel)	1 MS/s
Input impedance	
Powered on	1.25 GΩ 2 pF
Powered off/overload	4 kΩ minimum
Input signal range (software-selectable)	±1 V, ±2 V, ±5 V, ±10 V
Input bias current	±5 nA

¹ Operating channels in NRSE input mode while outside of the specified voltage range may impact accuracy of other channels.

Input offset current	±5 nA
Input coupling	DC
Overvoltage protection	
Powered on	±42 V maximum
Powered off	±35 V maximum

Table 1. Al Operating Voltage Ranges Over Temperature

	Measurement Voltage, AI+ to AI-			Maximum Working Voltage
Range (V)	Minimum (V) ² Typical (V) Maximum (V)		Maximum (V)	(Signal + Common Mode)
±10	±10.37	±10.5	±10.63	± 12 V of ground
±5	±5.18	± 5.25	±5.32	± 10 V of ground
±2	±2.07	±2.1	±2.13	±8.5 V of ground
±1	±1.03	±1.05	±1.06	±8 V of ground

AI Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 10,000
- CoverageFactor = 3σ

	Range			
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Gain Error (ppm of Reading)	104.4	105.9	110.6	118.4
Gain Tempco (ppm/°C)	20	20	20	20
Reference Tempco (ppm/°C)	4	4	4	4

² The minimum measurement voltage range is the largest voltage the NI PXIe-7866 is guaranteed to accurately measure.

	Range			
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Offset Error (ppm of Range)	16.4	16.4	16.4	16.4
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63
INL Error (ppm of range)	42.52	46.52	46.52	50.52
Random Noise, $\sigma (\mu V_{rms})$	263	156	90	74
Absolute Accuracy at Full Scale (µV)	2,283	1,170	479	252

Table 2. AI Absolute Accuracy (Calibrated) (Continued)

		Range				
Specifications	±10 V	±5 V	±2 V	±1 V		
Residual Gain Error (ppm of Reading)	2,921	3,021	3,021	3,021		
Gain Tempco (ppm/°C)	20	20	20	20		
Reference Tempco (ppm/°C)	4	4	4	4		
Residual Offset Error (ppm of Range)	661	671	700	631		
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63		
INL Error (ppm of range)	42.52	46.52	46.52	50.52		
Random Noise, $\sigma (\mu V_{rms})$	263	156	90	74		
Absolute Accuracy at Full Scale (µV)	36,895	19,018	7,667	3,769		

. <u>/i i i</u> - - PL

Calculating Absolute Accuracy

AbsoluteAccuracy = Reading \times (GainError) + Range \times (OffsetError) + NoiseUncertainty

GainError = ResidualGainError + GainTempco × (TempChangeFromLastInternalCal) + ReferenceTempco × (TempChangeFromLastExternalCal)

> OffsetError = ResidualOffsetError + OffsetTempco × (TempChangeFromLastInternalCal) + INL_Error

NoiseUncertainty = $\frac{\text{RandomNoise} \times \text{CoverageFactor}}{\sqrt{\text{number_of_readings}}}$

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 10,000
- CoverageFactor = 3σ

 $GainError = 104.4 \text{ ppm} + 20 \text{ ppm} \times 1 + 4 \text{ ppm} \times 10$

GainError = 164.4 ppm

OffsetError = 16.4 ppm + 4.18 ppm 1 + 42.52 ppm

OffsetError = 63.1 ppm

NoiseUncertainty = $\frac{263 \,\mu\text{V} \times 3}{\sqrt{10,000}}$

NoiseUncertainty = $7.89 \,\mu V$

AbsoluteAccuracy = 10 V × (GainError) + 10 V × (OffsetError) + NoiseUncertainty

AbsoluteAccuracy = $2,283 \,\mu V$

DC Transfer Characteristics

INL	Refer to the AI Accuracy Table
DNL	±0.4 LSB typical, ±0.9 LSB maximum
No missing codes	16 bits guaranteed
CMRR, DC to 60 Hz	-100 dB

Dynamic Characteristics

Bandwidth

Small signal	1 MHz	
Large signal	500 kHz	

Table 4. Settling Time

		Accuracy		
Range (V)	Step Size (V)	±16 LSB	±4 LSB	±2 LSB
±10	±20.0	1.50 µs	4.00 μs	7.00 µs
	±2.0	0.50 µs	0.50 µs	1.00 µs
	±0.2	0.50 µs	0.50 µs	0.50 µs
±5	±10	1.50 µs	3.50 µs	7.50 μs
	±1	0.50 µs	0.50 µs	1.00 µs
	±0.1	0.50 µs	0.50 µs	0.50 µs
±2	±4	1.00 µs	3.50 µs	8.00 µs
	±0.4	0.50 µs	0.50 µs	1.00 µs
	±0.04	0.50 µs	0.50 µs	0.50 µs
±1	±2	1.00 µs	3.50 µs	12.00 µs
	±0.2	0.50 µs	0.50 µs	2.00 µs
	±0.02	0.50 µs	0.50 µs	0.50 µs

Crosstalk

-80 dB, DC to 100 kHz, at 50 Ω

Analog Output

Output type	Single-ended, voltage output
Number of channels	24
Resolution	16 bits
Update time	1 μs
Maximum update rate	1 MS/s
Type of DAC	Enhanced R-2R

Range	±10 V
Output coupling	DC
Output impedance	0.5 Ω
Current drive	±2.5 mA
Protection	Short circuit to ground
Overvoltage protection	
Powered on	±15 V maximum
Powered off	±10 V maximum
Power-on state	User-configurable
Power-on glitch	1.6 V for 2 µs
Power-down glitch	0.4 V peak, decays to 0 V in 200 ms

Table 5. AO Operating Voltage Ranges for Over Temperature

	Measurement Voltage, AO+ to AO GND		
Range (V)	Minimum (V) ³	Typical (V)	Maximum (V)
±10	±10.1	±10.16	±10.22

AO Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

Table 6. AO Absolute Accuracy (Calibrated)

Specifications	±10 V Range
Residual Gain Error (ppm of Reading)	87.3
Gain Tempco (ppm/°C)	12.6
Reference Tempco (ppm/°C)	4

³ The minimum measurement voltage range is the largest voltage the NI PXIe-7866 is guaranteed to accurately measure.

Specifications	±10 V Range
Residual Offset Error (ppm of Range)	41.1
Offset Tempco (ppm of Range/°C)	7.8
INL Error (ppm of range)	61
Absolute Accuracy at Full Scale (µV)	2,498

 Table 6. AO Absolute Accuracy (Calibrated) (Continued)

Specifications	±10 V Range
Residual Gain Error (ppm of Reading)	2,968.6
Gain Tempco (ppm/°C)	12.6
Reference Tempco (ppm/°C)	4
Residual Offset Error (ppm of Range)	1,004.1
Offset Tempco (ppm of Range/°C)	7.8
INL Error (ppm of range)	61
Absolute Accuracy at Full Scale (µV)	40,941

Table 7. AO Absolute Accuracy (Uncalibrated)

Calculating Absolute Accuracy

AbsoluteAccuracy = OutputValue × (GainError) + Range × (OffsetError)

GainError = ResidualGainError + GainTempco × (TempChangeFromLastInternalCal) + ReferenceTempco × (TempChangeFromLastExternalCal)

OffsetError = ResidualGainError + AOOffsetTempco × (TempChangeFromLastInternalCal) + INL_Error

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

 $GainError = 87.3 \text{ ppm} + 12.6 \text{ ppm} \times 1 + 4 \text{ ppm} \times 10$

GainError = 139.9 ppm

OffsetError = $41.1 \text{ ppm} + 7.8 \text{ ppm} \times 1 + 61 \text{ ppm}$

OffsetError = 109.9 ppm

AbsoluteAccuracy = $10 V \times (GainError) + 10 V \times (OffsetError)$

AbsoluteAccuracy = $2,498 \mu V$

DC Transfer Characteristics

INL	Refer to the AO Accuracy Table
DNL	±0.5 LSB typical, ±1 LSB maximum
Monotonicity	16 bits, guaranteed

Dynamic Characteristics

	5		
	Accuracy		
Step Size (V)	±16 LSB	±4 LSB	±2 LSB
±20.0	5.3 µs	6.5 µs	7.8 µs
±2.0	3.2 µs	3.9 µs	4.4 μs
±0.2	1.8 µs	2.8 μs	3.8 µs
Slew rate	10 V/µs	5	
Noise	250 μV	RMS, DC to 1 MH	Z
Glitch energy at midscale transition	$\pm 10 \text{ mV}$	/ for 3 µs	
5V Output			
Output voltage	4.75 V	to 5.1 V	

0.5 A maximum

Table 8. Settling Time

Output current

Overvoltage protection	±30 V
Overcurrent protection	650 mA

Digital I/O

Table 9. Channel Frequency		
Connector	Number of Channels	Maximum Frequency
Connector 1	32	20 MHz
Compatibility	TTL, LVT	TL, LVCMOS
Logic family	Fixed	
Voltage level		
Digital input	5 V, 3.3 V	
Digital output	3.3V	

Table 10. Digital Input Logic Levels

Logic Level	Input Low Voltage (V _{IL}) Ma	aximum	Input High Voltage (V _{IH}) Minimum
5 V	0.80 V		2.00 V
3.3 V	0.80 V		2.00 V
Minimum inpu	t	-0.2 V	
Maximum input 5.5 V			
Input leakage current ±85 µA maximum		maximum	
Input impedance	ce		
5 V input	5 V input $74 k\Omega$ typical, pull-down		ypical, pull-down
3.3 V inpu	ıt	50 k Ω typical, pull-down	

Logic Level	Current	Output Low Voltage (V _{OL}) Maximum	Output High Voltage (V _{OH}) Minimum
3.3 V	100 µA	0.20 V	3.00 V
	4 mA	0.40 V	2.40 V

Table 11. Digital Output Logic Levels

Maximum DC output current per channel

Source	4.0 mA
Sink	4.0 mA
Output impedance	50 Ω
Power-on state ⁴	Programmable, by line
Protection ⁵	±15 V, per line
Direction control of digital I/O channels	Per channel
Minimum I/O pulse width	25 ns
Minimum sampling period	5 ns

External Clock

Direction	Input into device
Maximum input leakage	±85 μA
Characteristic impedance	50 Ω
Power-on state	Tristated
Minimum input	-0.2 V
Maximum input	5.5 V
Logic level	5 V, 3.3 V
Maximum input frequency	20 MHz

 ⁴ Tristate by default.
 ⁵ Only protects up to 20 lines simultaneously. NI recommends minimizing long-term over/undervoltage exposure to the Digital I/O. Prolonged DC voltage stresses that violate the maximum and minimum digital input voltage ratings may reduce device longevity. Over/under-voltage stresses are considered prolonged if the cumulative time in the abnormal condition exceeds 1 year.

Reconfigurable FPGA

Kintex-7 325T
407,600
203,800
16,020 kbits
840
40 MHz, 80 MHz, 120 MHz, 160 MHz, or 200 MHz
40 MHz
Onboard clock, phase-locked to PXI Express 100 MHz (PXIe_CLK100)
±100 ppm, 250 ps peak-to-peak jitter
DMA, interrupts, programmed I/O

Onboard DRAM

Memory size	1 Bank; 512 MB
Maximum theoretical data rate	800 MB/s streaming

Synchronization Resources

Input/output source	PXI_Trig<07>
Input source	PXI_Star, PXIe_DStarA, PXIe_DStarB, PXI_Clk10, PXIe_Clk100, External Clock 1
Output source	PXIe_DStarC

Bus Interface

Form factor	x4 PXI Express, specification v1.0 compliant
Slot compatibility	x4, x8, and x16 PXI Express or PXI Express hybrid slots
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	16

Power Requirements

Power requirements are dependent on the digital output loads and configuration of the LabVIEW FPGA VI used in your application.

+3.3 V	2.25 A
+12 V	1.65 A

Physical Characteristics

If you need to clean the device, wipe it with a dry, clean towel.

Tip For two-dimensional drawings and three-dimensional models of the device and connectors, visit *ni.com/dimensions* and search by model number.

Dimensions	21.4 cm × 13.0 cm × 2.1 cm (8.43 in. × 5.12 in. × 0.83 in.)
Weight	177.6 g (6.26 oz)
I/O connectors	3 × 68-pin VHDCI

Safety Voltages

Connect only voltages that are below these limits.

Channel-to-earth	±12 V, Measurement Category I
Channel-to-channel	±24 V, Measurement Category I

Caution Do not connect the NI PXIe-7866 to signals or use for measurements within Measurement Categories II, III, or IV.

Attention Ne connectez pas le NI PXIe-7866 à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure II, III ou IV.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as *MAINS* voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Product Certifications and Declarations* section.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use in non-residential locations.

Environmental Characteristics

Temperature and Humidity

0 °C to 55 °C
-40 °C to 71 °C
10% RH to 90% RH, noncondensing
5% RH to 95% RH, noncondensing
2
2,000 m

Shock and Vibration Random vibration Operating 5 Hz to 500 Hz, 0.3 g RMS Non-operating 5 Hz to 500 Hz, 2.4 g RMS Operating shock 30 g, half-sine, 11 ms pulse

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Commitment to the Environment* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

- X
- **EU Customers** At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Environmental Standards

This product meets the requirements of the following environmental standards for electrical equipment.

- IEC 60068-2-1 Cold
- IEC 60068-2-2 Dry heat
- IEC 60068-2-78 Damp heat (steady state)
- IEC 60068-2-64 Random operating vibration
- IEC 60068-2-27 Operating shock

Note To verify marine approval certification for a product, refer to the product label or visit *ni.com/certification* and search for the certificate.

CE Compliance $C \in$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2015/863/EU; Restriction of Hazardous Substances (RoHS)

Calibration

15 minutes	
1 year	
5.000 V (±2 mV)	
±4 ppm/°C maximum	
±25 ppm/1,000 h	
	1 year 5.000 V (±2 mV) ±4 ppm/°C maximum

Note Refer to Calibration Certifications at *ni.com/calibration* to generate a calibration certificate for the NI PXIe-7866

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit *ni.com/ product-certifications*, search by model number, and click the appropriate link.

Worldwide Support and Services

The NI website is your complete resource for technical support. At *ni.com/support*, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for information about the services NI offers.

Visit *ni.com/register* to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For support in the United States, create your service request at *ni.com/support* or dial 1 866 ASK MYNI (275 6964). For

⁶ Actual value stored in Flash memory

support outside the United States, visit the *Worldwide Offices* section of *ni.com/niglobal* to access the branch office websites, which provide up-to-date contact information.

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Helps/Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7015.

© 2020 National Instruments. All rights reserved.