

The Pal-6 Wi-Fi 6 (11ax) smartBox subsystem

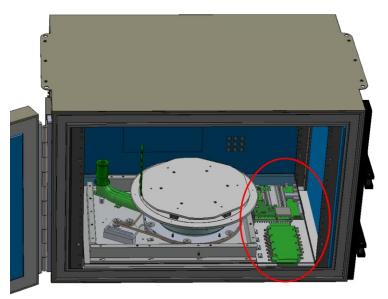
octoScope's Pal-6[®] is a Wi-Fi 6 (IEEE 802.11ax) test instrument. It functions as a traffic partner, sniffer, virtual station emulator and a load generator for testing throughput, capacity, roaming, band steering and more. Pal-6 comes built into an octoBox[®] chamber, making that chamber a *smartBox*[™]. It is also available as a stand-alone instrument.

Pal-6 incorporates optional Bluetooth (BT) test profiles, including A2DP, OPP, HFP, HID and BLE.

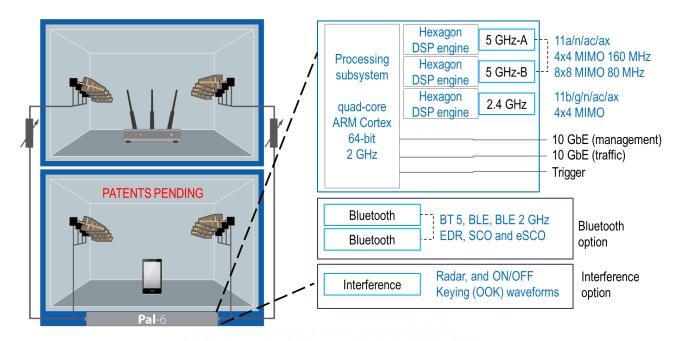
Pal-6 is based on one of the most advanced Wi-Fi 6 chipsets on the market supporting all the protocols, IEEE 802.11a/b/g/n/ac/ax. With access to the chipset's driver and firmware via the octoScope API, you can configure Pal-6 as a real device or as a test instrument. As a real device, Pal-6 acts as a traffic partner running the STA (station) and AP (access point) drivers. As an instrument, it can emulate virtual stations for testing APs under heavy traffic load from multiple stations, act as multiple APs to a station under test, perform expert monitoring and analysis, replay captured traffic or operate as a sniffer.

FEATURES

- 802.11ax up to 8x8 MIMO-OTA transmission
- 2.4 and 5 GHz 802.11a/b/g/n/ac/ax radios and two BT5/BLE/BLE 2 GHz EDR radios
- BT profiles: A2DP, OPP, HFP, HID, BLE HID
- Wireshark synchroSniffer[™] with a sniffer probe on each of the 5 radios for simultaneous Wi-Fi and Bluetooth sniffing
- Up to 32 virtual Wi-Fi stations, vSTAs, per radio, up to 96 vSTAs total per Pal-6
- Complete isolation from outside interference
- REST API for test automation
- Test script examples in Python


BENEFITS

- Quickly and easily verify emerging 802.11ax and legacy Wi-Fi devices in the ideal 8x8 MIMO-OTA environment
- Using the octoBox personal testbed, perform key tests including throughput vs. range vs. orientation, roaming, band steering, coexistence, WFA certification and more
- Test BT/Wi-Fi coexistence
- Test BT pairing and performance of peripheral devices, including speakers, keyboards, etc.
- Perform root cause analysis of issues using built-in multi-channel sniffing


PAL-6 ARCHITECTURE

Based on the latest 802.11ax chipset and with fine controls at the firmware and driver level, Pal-6 can function as a real device or as a precision test instrument. For example, to test band steering, Pal-6 can function at a set data rate, bandwidth and number of streams. To test receiver sensitivity, Pal-6 can operate at a fixed modulation coding scheme (MCS).

Pal-6 features three 802.11ax radios. The two 5 GHz radios support up to 8x8 MIMO in channels of up to 80 MHz, or 4x4 MIMO in 80+80 or 160 MHz channels. It includes two BT5, BLE, EDR radios to test Bluetooth and to capture BT sniffer traces. Pal-6 also includes a synthesizer for generating radar and other OOK (on off keying) interference.

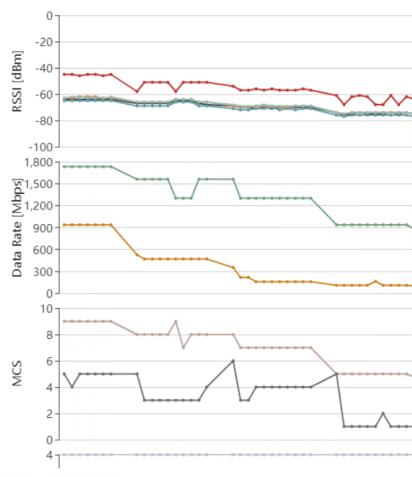
Pal-6 features two 10 GbE ports, one for traffic and the other for streaming plot statistics and PCAP captures.

Pal-6 built into the smartBox

Pal-6 stand-alone module

STATISTICS AND INDICATORS

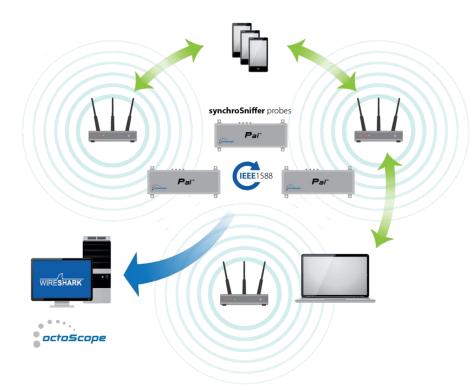
Pal-6 can function as a real-time analyzer to show adaptation behavior of modern Wi-Fi systems. It can monitor and plot RSSI, data rate, number of spatial streams, channel width and other physical layer information.


AP TESTING

To test access point (AP) performance or to emulate a realistic network with multi-station traffic, Pal-6 can emulate up to 32 vSTAs (virtual stations) per-radio, up to 96 virtual stations per Pal-6.

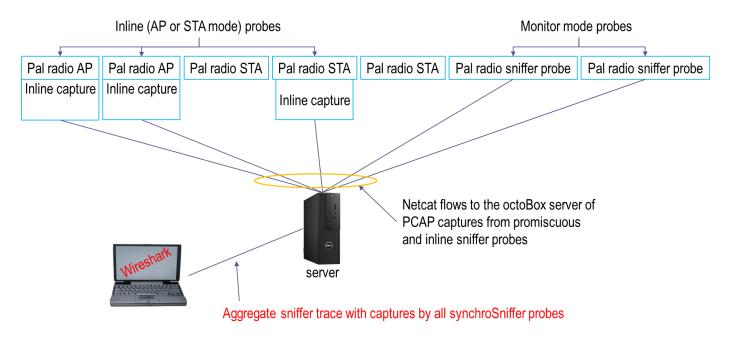
Real-life traffic can be bridged from the Ethernet interface via each vSTA to test video, voice and data performance with different priority and security settings.

STATION TESTING

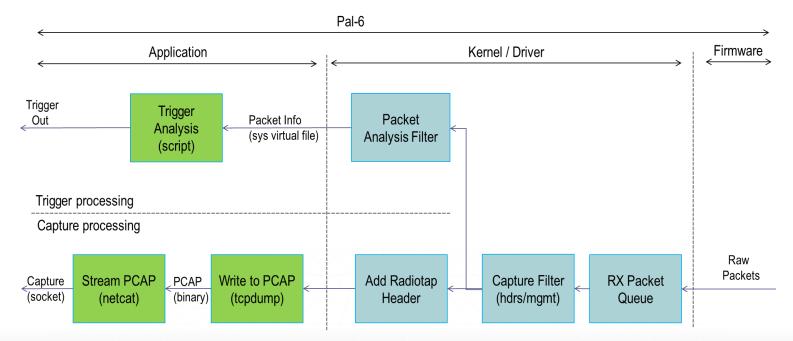

To test a station device, configure the Pal-6 radios as APs so they can be traffic partners to the station under test. The radios can also be sniffers or expert analyzers. Station tests include throught vs. range vs. orientation, RX sensitivity, data rate adaptaiton performance, roaming, band steering, and more.

SYNCHROSNIFFER™

Pal-6 can capture and stream packets in the PCAP format to the Wireshark in real-time. Each radio on the Pal-6 is synchronized with the radios on the same or other Pals via the Network Time Protocol (NTP) or Precision Time Protocol (PTP).


The captures from each radio in the octoBox testbed are combined in a common PCAP file viewable in the octoScope-customized Wireshark for easy analysis. In this custom Wireshark application, you can identify captures by probe (i.e. Pal radio). Such an aggregate multiprobe view helps analyze complex band steering, roaming and

mesh behavior in the presence of motion, interference, path loss, multipath and DUT orientation.


	roamin	g.pcap										
<u>F</u> ile	<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture Analyze Statistics Telephony. <u>W</u> ireless <u>T</u> ools <u>H</u> elp											
		0 🔒 📑 🎽	🕻 🖸 🤇 🗢 🗢 🖻	🗿 🕹 📃 🔳 🔍 Q	Q, 🎹							
	not ptp											
No.		Time	Source	Destination	Protocol	Length	Probe ID	Info				
	377	4.069491	CompexPt_2b:1c:80 ((SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2 🛰	Request-to				
	378	4.071573	CompexPt_2b:1c:80 ((SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2 —	Request-to		0		0
	379	4.073939	CompexPt_2b:1c:80 ((… SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2	Request-to		-	4. 1. 1 1 MALINA	A DESCRIPTION OF THE OWNER.
	380	4.076075	CompexPt_2b:1c:80 ((… SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2	Request to	sniffer2		Pal	-
	381	4.078218	CompexPt_2b:1c:80 ((… SamsungE_a3:e9:9f	(802.11		Pal2-PL61019-05:sniffer2	Request to		octoscope		
		4.080354		(… SamsungE_a3:e9:9f			Pal2-PL61019-05:sniffer2	Request-to				AND TOTAL OF STREET
		4.082490		(… SamsungE_a3:e9:9f			Pal2-PL61019-05:sniffer2	Request-to		0		
	384	4.084624	CompexPt_2b:1c:80 ((… SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2	Request-to				
	385	4.086763	CompexPt_2b:1c:80 ((… SamsungE_a3:e9:9f	(802.11	84	Pal2-PL61019-05:sniffer2	Request-to		-		
	386	4.096054	CompexPt_2b:1c:80	Broadcast	802.11	353	Pal2-PL61019-05:sniffer2	Beacon fra	a set ff a set	The second second		
	387	4.110786	Octoscop_10	Broadcast	802.11	353	Pal2-PL70915-02:sniffer1 —	Beacon tra	snifferi	ectodecoper	Pal	12
	388	4.153292	SamsungE_a3:e9:9f	CompexPt_2b:1c:80	802.11	92	Pal2-PL61019-05:sniffer2	Null funct		Constant and	and how. In contrast on the	and the second second
	389	4.153321		SamsungE_a3:e9:9f	(802.11	78	Pal2-PL61019-05:sniffer2	Acknowledg		U		U
	390	4.198483	CompexPt_2b:1c:80	Broadcast	802.11	353	Pal2-PL61019-05:sniffer2	Beacon fra				
	391	4.213191	Octoscop_10	Broadcast	802.11	353	Pal2-PL70915-02:sniffer1	Beacon fra				
	392	4.300888	CompexPt_2b:1c:80	Broadcast	802.11	353	Pal2-PL61019-05:sniffer2	Beacon fra				
	397	4.315588	Octoscop_10	Broadcast	802.11	353	Pal2-PL70915-02:sniffer1	Beacon fra				
	398	4.403291	CompexPt 2b:1c:80	Broadcast	802.11	353	Pal2-PL61019-05:sniffer2	Beacon fra				

synchroSniffer capability is particularly helpful when testing OFDMA links with multiple stations operating on different resource units (RUs) because a single sniffer can only monitor a single RU. For an OFDMA link with 4 stations, you may need 4 sniffer probes, one on each station. When placed inside a smartBox, each of the OFDMA stations can be monitored by a dedicated built-in Pal-6. The sniffer captures from each smartBox are then aggregated via the synchroSniffer software for powerful analysis of the entire complex OFDMA link. Pal-6 radios can also work as in-line sniffer probes when configured as an AP or a STA. Thus, Pall-6 radios can be synchrosniffer probes in three modes: monitor (capture all packets), inline AP (capture packets addressed to the AP) or inline STA (capture packets addressed to the STA).

EVENT BASED TRIGGERING

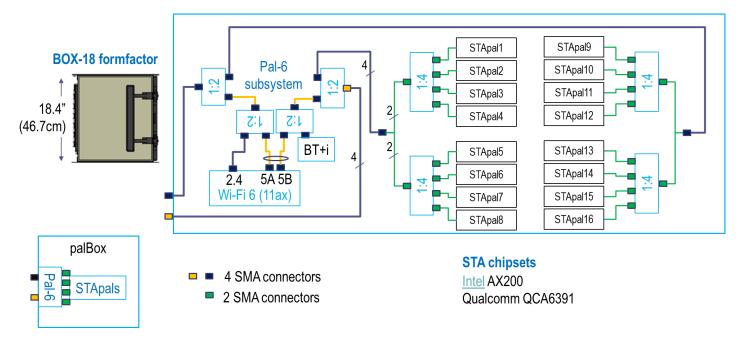
Any Pal-6 radio can generate a trigger based on conditions defined by a Javascript program running inside its OS for optimum performance. You can instantiate a filter in the driver and a trigger script.

BLUETOOTH TESTING

Bluetooth testing includes:

- Pairing test of BT5, BLE, EDR and legacy BT devices
- Master and Slave modes for pairing and traffic testing
- BT sniffer on 2 BT radios simultaneously, synchronized with captures from Bluetooth or Wi-Fi
 radios on any octoScope Pals
- BT traffic partner to the DUT
- HID latency
- AFH map
- Configurable packet size
- Simultaneous BT and Wi-Fi traffic
- Powerful test automation API

INTERFERENCE

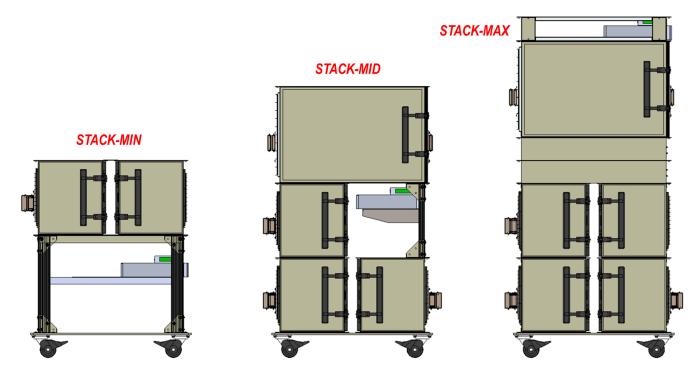

Interference is generated using a built-in frequency synthesizer and includes frequency hopping and On/Off Keying (OOK) based waveforms, including radar, Bluetooth LE, microwave oven, baby monitor, 802.11 FHSS, ZigBee and custom interference waveform.

Help Traffic Capture	Bluetooth Low Energy Microwave Oven Baby Monitor 802.11 FHSS ZigBee	Pulse width (usec)	Pulses per burst	
Interference Type	Custom CSV File Pulse Inter-pulse gap (usec) Continuous Wave Frequency Sweep	:) Burst period (usec)		
Attenuation 0 to 60 dB	0			
Frequency 500 to 6000 MHz	5625			

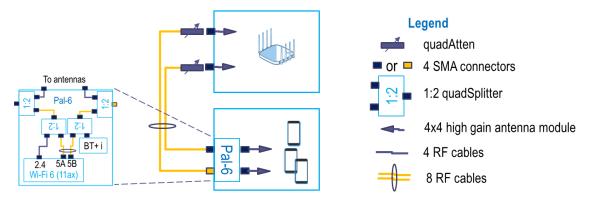
For waveform generation, you can configure tone frequency and pulse train parameters as shown above on the right.

PALBOX

The palBox[™] is a testbed building block containing 16 STApals[™] and a Pal-6, all packed into a BOX-18 enclosure.

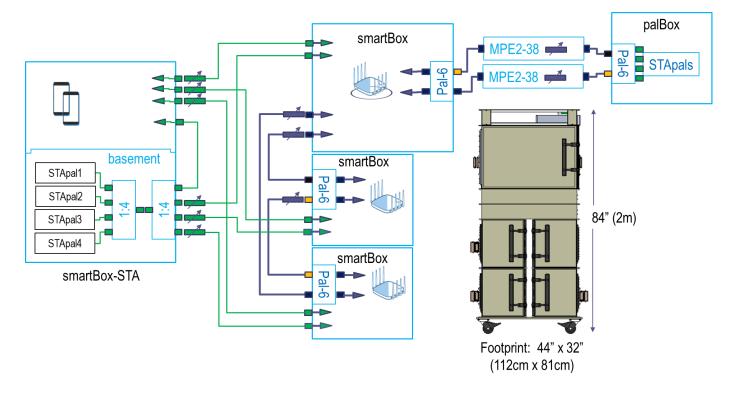


STApals are miniature Pals, each able to function as a multiPerf endpoint or a synchroSniffer probe. As a multiPerf endpoint, each STApal reports statistics similar to the Pal-6 statistics. For OFDMA sniffing, each STApal can be configured to sniff a single Resource Unit (RU) and with octoScope's synchroSniffer capability, the captures by multiple STApals are aggregated into a single complete OFDMA trace.

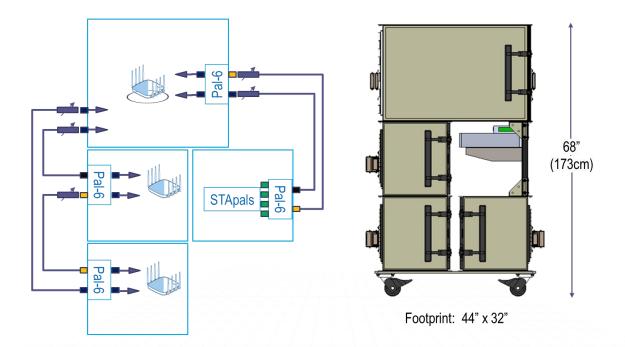

STApals can be based on either the Intel AX200 and Qualcomm QCA6391 chipsets.

PAL-6 IN AN OCTOBOX PERSONAL TESTBED

STACK-MIN, STACK-MID and STACK-MAX testbeds are recommended configurations with their test capabilities summarized in a table below.



A block diagram of the simplest Pal-6 based testbed, STACK-MIN, is shown below.


The STACK-MIN testbed is capable of the following tests:

- RvR
- RvR with rotation, RvRvO or RvOvR if a turntable is included
- Band steering
- Packet capture
- Addition of Triathlon[™] to analyze the RF layer

The STACK-MAX is the most comprehensive testbed.

The STACK-MID testbed supports RvR, TR-398 and other common tests.

TESTBED CAPABILITIES

	STACK-			Natas		
	MIN	MID	MAX	Notes		
RvR, RvRvO, RvOvR	V	٧	V	Orientation or rotation tests require a turntable		
Tri-band throughput	V	٧	V	Aggregate throughput on up to 3 channels		
synchroSniffer probes				palBox in STACK-MID and STACK-MAX has 16 STApals		
5 GHz	2	24	24	and a Pal-6 subsystem. Each STApal has a 2x2 STA		
2.4 GHz	1	20	20	radio for sniffing on either 2.4 or 5 GHz band.		
OFDMA, 16 STAs		٧	V			
Inline sniffing	V	V	V	synchroSniffer probe while in STA or AP mode,		
				reporting packets targeted for the STA or AP		
Band steering	V	٧	V			
Roaming		V	V			
Mesh		٧	V			
8x8 MIMO OTA	V	V	V			
8x8 with multipath			V			
160 MHz MIMO OTA	V	V	V			
MU-MIMO OTA	V	٧	V	Beamforming based multi-user MIMO		
DFS	V	V	V			
ACS	V	٧	V			
Traffic replay	V	٧	V			
vSTA				Each vSTA can run its own traffic using octoScope's		
5 GHz	64	256	256	multiPerf mp2mp traffic; bridge via vSTAs to set up		
2.4 GHz	32	128	128	application layer traffic, e.g. voice/video streams		
Total	96	384	384			
STApal OFDMA STAs		16	16	OFDMA multiperf endpoints		
TR-398		٧	V	Automated certification to the Broadband Forum TR-		
				398 performance test standard		

PAL-6 FOR USE IN TEST HOUSES

Use the *Pal-6* in a walk-in isolation chamber or in an open-air test environment, such as the test house.

All the RF connectors for the Wi-Fi 6 and Bluetooth radios and interference can be directly connected to the antennas or into a testbed. Antenna brackets support all octoScope's antenna carriers, including high gain antennas and dipole antennas for open air testing.

The default antenna system includes all dipole antennas for the Wi-Fi, Bluetooth and synthesizer ports.

Pal-6 antenna system can be configured with any of the octoBox antennas.

PAL-6 SPECIFICATIONS

Wi-Fi			
Channels	2.4 GHz and 5 GHz; tri-band		
Bandwidth	20, 40, 80, 80+80, 160 MHz		
Standards 801.11a, 802.11b, 802.11g, 802.11n, 802.11ac (wave 2), 802.11ax			
Virtual stations	32 per-radio		
Traffic replay	From PCAP file		
Monitor	Detailed statistics from the Wi-Fi chipset		
Sniffer	Wireshark captures		
802.11ax PHY	Downlink OFDMA Uplink OFDMA Single user MIMO with > 1 spatial stream Downlink multiuser MIMO DL and UL single user transmit beamforming DL OFDMA + transmit beamforming		
802.11ax MAC	Trigger frame supportNon-trigger based and trigger-based sounding for beamformingMulti-user RTS and CTSBuffer status reportUL-OFDMA Random AccessMultiple BSSIDBandwidth query report		
Bluetooth			
Protocols	Bluetooth 5, BLE, BLE 2 Mbps, EDR, SCO and eSCO		
Test features	BT Master and Slave modes for pairing and traffic testing, HID latency, AFH map, configurable packet size, simultaneous BT and Wi-Fi traffic		
Sniffer	Wireshark captures via synchroSniffer on the same time base as Wi-Fi radios in the same or disparate Pal-6s or Pals in the testbed; simultaneous capture on both BT radios		
Interference			
Channels	2.4 and 5 GHz		
Bandwidth	20, 40, 80, 80+80, 160 MHz		
	Replay traffic captures (PCAP files) with configurable traffic load and priority		
	Programmable MCS (modulation coding scheme), WMM (wireless multi media) priority and other settings		

General	
Traffic endpoints	multiPerf [®] , iperf3
	Trigger out connector for triggering external RF instruments
Control	Ethernet
Power	Power adapter
Dimensions	23" x 10.4" x 1.4" (58 √ 26 √ 3.5cm)
TX power	MCS, # stream, frequency and channel width dependent
Processor subsystem	quad-core, ARM Cortex 64-bit, 2 GHz

PAL-6 SOFTWARE OPTIONS

Option	Description
SW-BLUETOOTH	Bluetooth software implementing A2DP, OPP, HFP, BLE, HID, AFH
SW-IGEN	Software license for Pal-6 synthesizer for DFS testing and other OOK signal generation
SW-SNIFFER	Streaming sniffer captures
SW-VSTA	32 vSTAs (virtual stations) per radio
SW-BRIDGE	Bridging capability for each of the vSTAs to run application layer traffic
SW-TRIATHLON	Software to synchronize Pal-6 measurements with the LitePoint IQxel-MW

PAL-6 REAL-TIME RADIO STATUS

STA	AP	MON	
٧	٧	V	Offline
V	٧	V	Monitor
٧			Scanning <ch #=""></ch>
V	٧		PHY mode <ht20, etc.="" he40,="" ofdma,=""></ht20,>
V	٧	V	Channel primary and secondary channels
٧			Max bandwidth
V			Associated STAs <#> hover over to show list of STAs
٧			MAC address
V	٧		BSSIDs <list></list>
	V		SSID

TX POWER AND RX SENSITIVITY

RDP0258 (AP.HK01v2) - 5GHz (Tx)

		<u> </u>	
Metric	CS	Measured	Notes
Tx Power Accuracy (dB)	+/- 1.5 dB CLPC +/- 2.5 dB OLPC	±1.5 dB CLPC +4.0 / -1.5 dB OLPC	
IEEE Mask-limited Power (VHT80 4x4)	23 dBm	23 dBm	0.00
IEEE Mask-limited Power (VHT80 8x8)	23 dBm	23 dBm	mm 20 m
EVM Limited Power (MU HE80)	14.5dBm@-41dB	16dBm	10° A12 00° 19
EVM Limited Power (MU VHT80)	16.5dBm@-38dB	18dBm	10
EVM Limited Power (SU HE80)	18dBm@-35dB	20dBm	00° 011 61
EVM Limited Power (SU VHT80)	19.5dBm@-32dB	22dBm	and the second
EVM Limited Power (MU HE160)	14.5dBm@-41dB	18dBm	O. O. P.
EVM Limited Power (SU VHT160)	19.5dBm@-32dB	22dBm	ø
Tx EVM Floor (Header-only)	-41 dB	-41.5 dB	

RDP0258 (AP.HK01v2) - 5GHz (Rx)

Metric	CS	Measured	Notes
Sensitivity (11a/6Mbps/8x8/1SS)	-98.5 dBm	-100.5 dBm	
Sensitivity (MCS0/VHT20/1x1/1SS)	-93.5 dBm	-94.0dBm	
Sensitivity (MCS0/VHT20/8x8/1SS)	-98.5 dBm	-100.5dBm	10019
Sensitivity (MCS9/VHT80/8x8/4SS)	-67 dBm	-67.5dBm	
Sensitivity (MCS9/VHT80/8x8/8SS)	-64 dBm	-64.5dBm	and ou color
Sensitivity (MCS9/VHT160/4x4/4SS)	-61 dBm	-61.5dBm	N 200 22
Sensitivity (MCS11/HE80/8x8/4SS)	-61 dBm	-62.0dBm	attends unle hers 6
Sensitivity (MCS11/HE80/8x8/8SS)	-58 dBm	-59.0dBm	1 Pro 11 12 101 200
Sensitivity (MCS11/HE160/4x4/4SS)	-55 dBm	-55.5dBm	of allow Mark o
Max Rx Signal	-10 dBm	-10dBm	and the sume

Metric (room temp)	CS	Measured	Notes
Tx Power Accuracy (dB)	+/- 1dB	+/- 1dB	
IEEE Mask Limited Power (CCK)	23dBm	24 dBm	
IEEE Mask Limited Power (VHT40)	23dBm	24 dBm	
EVM Limited Power (MU HE40)	16dBm@-41dB	20dBm	10° m
EVM Limited Power (MU VHT40)	18dBm@-38dB	22dBm	100 M2 a
EVM Limited Power (SU HE40)	19.5dBm@-35dB	22dBm	One of cor 20
EVM Limited Power (SU VHT40)	21dBm@-32dB	23dBm	19.00 and b.
Tx EVM Floor (Header-only)	-41dB	-43dB	stellins on a son of
Sensitivity (11b/1Mbps/4x4/1SS)	-103dBm	-106.0dBm	aconder to the ora
Sensitivity (MCS0/VHT20/1x1/1SS)	-94.5dBm	-95.0dBm	no of are not of
Sensitivity (MCS0/VHT20/4x4/1SS)	-98.5 dBm	-99.5dBm	do will an all
Sensitivity (MCS9/VHT40/4x4/4SS)	-68.5dBm	-69.0dBm	Carl of Hun
Sensitivity (MCS11/HE40/4x4/4SS)	-62.5dBm	-63.5dBm	109100
Max Rx Signal	-10dBm	-10dBm	On .

RDP0258 (AP.HK01v2) - 2.4GHz

RDP0258 (AP.HK01v2) - DL-OFDMA

Metric	CS	Measured	Notes
Tx Power Accuracy (dB)	+/- 1.5 dB	+/-1.5	
IEEE Mask-limited Power (HE80 8x8)	23 dBm	23dBm	Incit9
EVM Limited Power (SU HE80 MCS11)	17.5dBm@-35dB	18dbm	
EVM Limited Power (SU HE40 MCS11)	18.0dBm@-25dB	20dBm	0 ¹⁰ of 501,20
EVM Limited Power (SU HE20 MCS11)	18.5dBm@-35dB	20dBm	
Tx EVM Floor (Header-only)	-41 dB	-41 dB	OH MICH LONGE PER

RDP0258 (AP.HK01v2) - System Level Power

Metric	CS Target (W)	Measured	Notes
8x8+4x4 - Retail Thermal Max	44.5		
8x8+4x4 - Retail Typical	40.5	39.0	
8x8+4x4 - Retail Throughput Max	23.5	18.7	a Wood Pa
4x4+4x4 - Retail Thermal Max	35.0		N. A. L. C.
4x4+4x4 - Retail Typical	32.5	30.9 30.9	1.08.00 M
4x4+4x4 - Retail Throughput Max	20.5	15.5	97 19 1
		den stratt	0, 0,

STA	AP	UI NAME	DETAILS	REPORTING
V	V	TX aggregate packets		Total since last report
V	V	TX unaggregated		Total since last report
		packets		
٧	V	RX aggregate packets		Total since last report
V	V	RX unaggregated		Total since last report
		packets		
V	V	TX block ack window		Total since last report
		advances		
٧	V	RX overruns		Total since last report
V	V	RX decryption fails		Total since last report
V	V	RX MIC fails	Rx MIC (message integrated check)	Total since last report
			failure count	
٧	V	RX bad CRC		Total since last report
V	V	RX PHY errors		Total since last report
٧	V	Bad RTS	RTS failure count	Total since last report
٧	V	RTS	RTS success count	Total since last report
٧	V	Missing ACKs		Total since last report
٧	V	Bad FCS	FCS failure count	Total since last report
V	V	Noise floor	Channel Noise Floor; NF is re-calibrated	Value
			every 15 seconds	
V	V	NF secondary 80+80	Noise Floor on Secondary 80 MHz	Value
			channel for 80+80 mode	
V	V	Control RSSI per chain	RSSI on control channel; plot for each	Min, Max, Linear mean
			chain on the same chart, Control RSSI.	in dB
			Label each plot as chain-0, 1, 2,, 7.	
V	V	Extended RSSI 80 per	80+80 channel RSSI on secondary 80	Min, Max, Linear mean
		chain	MHz channel; plot Extended RSSI 80.	in dB
			Label each plot as chain-0, 1, 2,, 7.	
V	V	ACK RSSI per chain	Plot ACK RSSI per chain; label each plot	Min, Max, Linear mean
			as chain-0, 1, 2,, 7.	in dB
V	۷	Management RSSI	Combined management RSSI for all	Min, Max, Linear mean
		Data DCCI	chains	in dB
V	V	Data RSSI	Combined data RSSI for all chains	Min, Max, Linear mean
		TV streams		in dB
V 	۷ N	TX streams		Min, Max, Mode.
V	V	RX streams	0/ utilization including \//: Fitraffic and	Min, Max, Mode.
V	V	% load total	% utilization, including Wi-Fi traffic and	Value
			non-Wi-Fi signals	Value
V	V	% load Wi-Fi	% for Wi-Fi traffic total including the reporting radio	value

PAL-6 RADIO STATS – AVAILABLE AS PLOTS VS. TIME

V	V	% load not my Wi-Fi	% utilization for Wi-Fi traffic by other than the reporting radio	Value
V	V	% airlink my Wi-Fi	% utilization for Wi-Fi traffic by the reporting radio	Value
٧	V	TX bandwidth		Min, Max, Mode
٧	٧	RX bandwidth		Min, Max, Mode
٧	٧	TX power		Value
	٧	TX beacons		Total since last report
٧	V	TX bytes		Total since last report
٧	V	RX bytes		Total since last report
٧	V	TX packets		Total since last report
٧	V	RX packets		Total since last report
V	V	TX unicast		Total since last report
V	V	TX multicast		Total since last report
V	V	RX unicast		Total since last report
V	V	RX multicast		Total since last report
V	V	TX priority	TX packets by priority; individual plot	Total since last report,
			names: BK, BE, VI, VO	4 values
٧	V	RX priority	RX packets by priority; individual plot	Total since last report,
			names: BK, BE, VI, VO	4 values
٧	V	TX management		Total since last report
٧	V	RX management		Total since last report
٧	V	TX data packets		Total since last report
٧	٧	RX data packets		Total since last report
٧	V	TX control packets		Total since last report
٧	٧	RX control packets		Total since last report
٧	V	TX errors		Total since last report
٧	٧	RX errors		Total since last report
٧	V	TX dropped packets		Total since last report
٧	V	RX dropped packets		Total since last report
٧	V	TX rate		Min, Max, Mode
٧	V	RX rate		Min, Max, Mode
٧	V	TX MCS		Min, Max, Mode
V	V	RX MCS		Min, Max, Mode
V	V	Retries		Total since last report
٧	V	Excessive retries		Total since last report

Glossary

A2DP = advanced audio distribution profile ACS = automated channel selection AFH = adaptive frequency hopping AP = access point BE = best effort (priority) BK = background (priority) BLE = Bluetooth low energy BT = Bluetooth DFS = dynamic frequency selection HE = high efficiency HFP = hands free profile HID = human interface device profile MCS = modulation coding scheme MIMO = multiple input multiple output MP2MP = multi-point to multi-point (traffic generator) MU = multi-user OFDMA = orthogonal frequency domain multiple access OPP = object push profile OTA = over the air RSSI = receive signal strength indicator RU = resource unit RvR = rate vs. range RvRvO = rate vs. range vs. orientation RvOvR = rate vs. orientation vs. range RX = receive TX = transmit STA = station (aka client) VI = video (priority) VO = voice (priority) vSTA = virtual STA

CONTACT

octoScope 305 Foster Street Littleton, MA 01460 Tel: +1.978.222.3114 sales@octoscope.com octoScope 780 Montague Expressway Building 1 San Jose, CA Tel: +1.408.888.0478